ﬁ F T |
CONSULTING

SUBTASK 4.6 REPORT

EVALUATION OF THE CODING OF THE MODELS
One of Three 18-Month Reports

Prepared for:

Social Security Administration
6401 Security Blvd.
Baltimore, MD 21235
Contract SS00-15-30598

Prepared by:
FTI Consulting, Inc.

3 Times Square
New York, NY 10036

CRITICAL THINKING
AT THE CRITICAL TIME™

Contents

INTRODUCGCTION. .. ceutteeirtenertnernecrenserenseresssrsseesssessssssnssssnssssssssassssssessssessssssnssssnssssssssassssnssssnsssnsssansssassssnssssnsessnnes 3
AUTHORS AND CONTRIBUTORS.....ccuttteieruniirnncrenceraseerasersssersssernsessnssssssssasessssessssessssssnssssssssnssssnsessssssassssasessnsssnse 4
FINDINGS ... teuiituiitteiitnnctenetentereseernsessssesnssssssesasssssssssssessssssnssssnsesassssassssnsessssesnssssnsssassssassssnsesnsssansssassssnsessnsesanses 5
SCOPE AND METHODOLOGY OF OUR EVALUATIONcccctteiiteieteniernniernsiancsrasssssssssssesnssssnssssssssassssssssssssssssssnsssnns 6
CODE REVIEW ...cuieiiiieiiiteiirencienciesstsesssessessssssnsssssssssssssssssssssssssssnsssassssasssssssssssessssssnssssnsssassssnssssnsesnssssnsssnssssnsesas 7
IDENTIFICATION OF INACTIVE AND THIRD PARTY CODE..uuuuueiieeiettiutieseeerertstnnaeeeeerssstsnnaseeessssssnnnaeseeessssssnnnesessssssssnnaseesessesses 7
REVIEW OF CODE IMIODULES.......ctvtttutiieieeeieeetttiieeeeeeesessssieeeeesssessstneeeessssssasnesesssssssssnnssessssssssnnesessssssssnsnseeesessesseressnnnns 7
PROCESS FLOW ..uuiiiieeietiiieieeeeeeetttt i eeeeeeeeeetatteaeseeessaassnaaeeeesesssssnnsseeessssssnnnnsesssssssnnnsnseeessssssnnnnseeessseessssssnnnseseeessssnsnnnnns 8
CODE REVIEW FINDINGS .. eiittvtttutieteeeeeettstieeeeesssessasaaesesesesessssanaeeessssssssannaesessssssssnnasessssssssssnesesssesssssnseseeessseessessssnnsnesens 8
C++ CODE OPTIMIZATION RECOMMENDATIONS ..vvvvvuuueeseeerersssnnieseeessssssnnaesessssssssnnaeeessssssssnneseesssssssnniessessssssssnnneseesssssssnnnns 8
LOOD OPLIMUZATION.eeeeeeeeee ettt ettt ettt e et e st e s st e e sasn e e sasaeesenneeeas s esnneeenanseenas 8

RY oLtol (o] [7d=3e B W Tor o] (O RSN 9
ATFQY MBIGO ...ttt ettt ettt e e s ettt e s e sttt e e e s e te e e s et et e s e s snnee 9
ATTQY POINTOIS ..ttt e e aeaaaaaaaaaasaaaaaaaaaaaaaaaaaaaaataaaaaeeseaesessesssesesesessssssssssssss asssssssnsnnnsnnnnnns 10
ALGORITHM IMPLEMENTATION REVIEWctuiiteituncrrnncrennerensernncesnssrassssasessssessssessssssnssssssssassssasessnsessssssnssssnsens 10
BACKGROUND ..uuueiieeieettiiieseeeeeeetsntaeeeesseessaseaseeessssssnssneseesssssssssnnseeessssssssnnseeeesssssssannsesessssssssnnneeesnseessssssssnsnneesessssssnnnn 10
IVIODULES REVIEWED ...eeeieieieieieieiesesesesesesasesasssassasnnnnnnnsnnnnnnnsnnssnnsssesssssenssseneseseneseseseses 10
ALGORITHM IMPLEMENTATION REVIEW FINDINGSceevtvtuuiiereeereeetttiieeeeeeeresssnneseeesssssssnnseessssessssnasesessssssnsnnsesessssssnsnnneeseees 12
BEST PRACTICESccuiteeiieurtenerennerensernsieenssresssrasesensersssessssssnssssssssssssessessssessssssnssssssssnsssensessssessssssnsesnsssansesansennnes 13
OVERALL CONCLUSIONS......ccttuerteereniereecreesctescseaseresseressessssssnsssessssassssssessssessssssnssssnssssssesassssnssssnsesnssssnsssansesnnes 13
PIMS - C++ CALLED FUNCTIONS. .. .ottt it tetieeiererenennerneeeereassnnssnesnnsnnseneesnssnssansssnsssnnsensensenessnnsnnnns Exhibit 1
SE-PIMIS PROCESS FLOW DIAGRAIMouittiiiiiiiieietietettetttentensensansnesnessassaseesessesensessesssssnssssnserssensensansnns Exhibit 2
IME-PIMS PROCESS FLOW DIAGRAIM... ..ottt iiteiteitieeie st senseeteeeessessnssasessseesseesessesressssensssassessesesennee Exhibit 3

2|Page

Introduction

In July 2015, the Social Security Administration (SSA) engaged the FTI Consulting team (FTI) to conduct
an 18-month, in-depth technical review of the Pension Benefit Guaranty Corporation’s (PBGC) single-
employer (SE) and multiemployer (ME) Pension Insurance Modeling System (PIMS). Task 4 of the
Statement of Work (SOW) consists of 10 subtasks required for this in-depth review - nine specific areas
of review and a final report.’ Three of the subtask reports are due at the end of each of the six-, 12- and
18-month periods. This report for Subtask 4.6, along with those for Subtasks 4.4 and 4.8, is one of the
three reports due at the end of the 18-month period (with approved extension). As a part of our review
of PIMS, this report documents our evaluation of the coding of the models and the associated
documentation.

While most of the subtask reports thus far have been devoted to the design and theory behind PIMS,
this report is focused on the actual implementation. This report addresses the following key questions
raised in Subtask 4.6:

1. Does the coding of algorithms in the model appropriately reflect the documentation?
2. Are the assumptions, algorithms, and procedures reasonable?

Further, as was noted in the Subtask 4.5 report, since the code review was one of the last portions of
our evaluation, the examination of coding accuracy was deferred until this subtask. As a result, we have
also addressed coding documentation within this report.

! Social Security Administration, Evaluation of the Pension Benefit Guaranty Corporation’s Pension Models,
Description/Specification/Work Statement, page 14.

3|Page

Authors and Contributors
Authors

Alex Arnote
FTI Consulting, Inc.

Liaw Huang, Ph.D., FSA, MAAA, EA, FCA
The Terry Group

Contributors

Jeff Leonard, FSA, EA, MAAA
FTI Consulting, Inc.

John Moore, FSA, MAAA, EA, FCA
The Terry Group

4|Page

Findings

During our review of the PIMS coding, we found that basic system design and descriptive
documentation was out-of-date or non-existent. For example, neither SE- nor ME-PIMS has a process
flow diagram, module library, or variable dictionary. Of particular concern was the lack of design
documents for ME-PIMS, which was only recently developed. The only design documentation we
received for ME-PIMS was a series of change requests sent to the developer. Because there was little
documentation with which to compare the code, much of our review was focused on identifying the
design of the model and generating our own process documentation.

Based on our review we recommend the following actions be taken by PBGC, in priority order:

1.

Provide an addendum to the PIMS 2010 Guide and the “Key Differences” documents (as
referenced below) to include the changes listed based on our module review (under Algorithm
Implementation Review Findings, beginning on page 10).

Update documentation to reflect methodologies and parameters which appear in the Statistical
Analysis Software (SAS) code or as comments in PIMS C++ code but are not currently
documented.

Refrain from using hard-coded values within the code for values that are not static.

Utilize industry best practices for system documentation when designing and implementing
future versions of PIMS.

Consider creating guidelines around the use of descriptive variables in future programming
development.

Although a major undertaking, consider rewriting the program from scratch rather than
modifying the legacy code, which would result in improved performance and reduced
maintenance costs (due to code reduction).

5|Page

Scope and Methodology of Our Evaluation

This report addresses the accuracy of the implementation of PIMS. Our recommendations are directed
towards the Policy, Research and Analysis Department (PRAD) as well as the PBGC Office of Information
Technology (OIT) with the goal of ensuring that PIMS has been implemented as designed. This report
does not address the adequacy of PIMS modeling techniques, model assumptions, or the change
management process, which are covered in other reports in our in-depth technical review.

As part of this evaluation we identified and reviewed the following documents provided by PBGC:

1. Pension Insurance Modeling System, PIMS System Description, Version 1.0, 2010 (“PIMS 2010
Guide”): This is a comprehensive description of PIMS modeling methodology, data,
assumptions, equations, parameters, and simulation process and code organization. The system
description is written for SE-PIMS. ME-PIMS follows similar code organization but has significant
differences due to a different pension insurance program design and regulatory framework.

2. Multiemployer PIMS, System-Validation Documentation, Key Differences Between SE-PIMS
and ME-PIMS, 2011 (“Key Differences”): This document is intended to be read together with
the PIMS 2010 Guide. It sets forth, in considerable technical detail, additional algorithms used
in ME-PIMS, including the modeling of the Pension Protection Act of 2006 (PPA), PPA statuses,
funding improvement and rehabilitation plans, plan sponsor contributions, and mass
withdrawals.

3. Verification and Quantification of Buck’s Recommended Changes, 2014: This document
discusses PBGC's research in validating Buck’s recommended changes to ME-PIMS. It provides
changes to ME-PIMS subsequent to the Key Differences document.

4. 2014 Projections Report: The appendix to the 2014 Projections Report contains up-to-date
assumptions and methods not available in the other documents (e.g., the modeling of the
Multiemployer Pension Reform Act of 2014 (MPRA)).

The SOW contemplated that our work would include a comparison of code to documentation.
However, the lack of existing system documentation required that we first generate our own module
libraries and process flow diagrams. Once created, this FTI-generated documentation was used to
determine which of the thousands of modules needed to be included in our review. Inactive code and
standard/purchased code libraries were excluded from our review.

Once identified, we conducted a cursory review of the relevant modules focusing on the following
questions:

1. Which model (ME or SE) used the module and if used by both, were they the same versions for
both models?

2. Does the module contain calculations or formulas of an actuarial or economic nature?
3. Does the module contain any hard-coded values?

This resulting information was then used to identify which modules would be targeted for a detailed
review and comparison to the system documentation.

2 For the purposes of these reports, “inactive code” refers to modules which are never called, either directly or
indirectly, by the main process.

6|Page

Code Review

Identification of Inactive and Third Party Code

During the initial project kickoff meeting, FTI was informed by PBGC staff that SE-PIMS included over
one million lines of code. Given the extensive age of the application and the lack of provided
documentation, we assumed that a great deal of this code would be inactive and therefore not subject
to the review. Our first step was to utilize automated tools to work through the code and identify which
modules were never called by the main process and which code was provided by third parties, as these
modules were not subject to our review. As shown in the table below, 31% of SE-PIMS code and 41% of
ME-PIMS code modules were identified as inactive.

SE-PIMS ME-PIMS

Total Functions

Total Class-Level Functions 1,195 1,246

Total File-Level Functions 1,935 230
3rd Party Functions

3rd Party Class-Level Functions 315 0

3rd Party File-Level Functions 1,925 2
Total Functions (Excluding 3rd Party) 890 1,474
Functions Called by Main Process (Excluding 3rd Party) 614 873
Functions Mot Called by Main Process (Excluding 3rd Party) 276 601
Percent of Functions Inactive | 31%| | 41%|

In addition to the inactive functions, there are numerous variables and commented-out sections of code
that appear to be obsolete or that were only intended for temporary use. For example:

//oIndBenFlat.basic_ben = 0.00001; // JPWxTemporary REMOVE THIS
// Per Jeff Lane (e-mail from March 28, 2014 10:35 AM), this should never be called

// NOTHING IS DONE WITH THESE VALUES!!! // SQLS
//long ebc_age = SQLS::comm_xra.fld ebc_age;
//long eubc_age = SQLS::comm_xra.fld _eubc_age;
//long xra = SQLS::comm_xra.fld xra;

// VALUES ARE NOT USED!!! AFC // SQLS

//double ir_t = SQLS::comm_bc_age.fld_ir_t;
//double avg_red = SQLS::comm_bc_age.fld _avg_red;
//Llong tvbc_age = SQLS::comm_bc_age.fld_tvbc_age;

Review of Code Modules

Once the active, PBGC-built modules had been identified, each was given a cursory review to identify if
it contained any hard-coded values or calculations. There were many modules that appeared in both
ME- and SE-PIMS, and these were compared programmatically to determine if any differences existed.
If no differences were identified, only the SE-PIMS module was reviewed. Otherwise, only the
differences in the ME-PIMS version were reviewed. A complete list of the modules reviewed is included
as Exhibit 1 with additional detail available upon request.

7|Page

Process Flow

FTI then created process flow diagrams using automated tools in order to identify the order in which
modules were called and to identify which modules were the key drivers of the process. The resulting
process flow diagrams of the main event loops for SE- and ME-PIMS have been included as Exhibit 2 and
Exhibit 3, respectively.

Code Review Findings

Because very little coding documentation exists for PIMS, we found no discrepancies of note. However,
during our review, FTI did note several items that PBGC should consider addressing:

1. FTlidentified hard-coded values throughout the PIMS code. While many of these are
appropriate, there are many cases where the values used could change in the future, either
permanently or due to, for example, an ad hoc request. For future program changes PBGC
should consider using values stored in a SQL server table in place of hard-coded values
whenever the value has the potential to change. For example, the below code in PIMS is
currently assigned static values and would need to be manually updated every time the values
changed:

0Act_flat_cashflow.aNewHireHeadcountDist[20]
0Act_flat_cashflow.aNewHireHeadcountDist[25] 16640;
oAct_flat_cashflow.aNewHireHeadcountDist[30] = ©.14240;

0.24870;
0.
0

oAct_flat_cashflow.aNewHireHeadcountDist[35] = ©.11600;
(7]
0
7}
7}

oAct_flat_cashflow.aNewHireHeadcountDist[40] = ©0.10560;
OAct_flat_cashflow.aNewHireHeadcountDist[45] .08830;
OAct_flat_cashflow.aNewHireHeadcountDist[50] .06580;
OAct_flat_cashflow.aNewHireHeadcountDist[55] .06680;

2. The code contains many variables that drive calculations throughout the process. There should
be a dictionary that lists every variable used within the program and describes what it
represents and how it is used. Barring this, the code should consistently include a short
description when the variable is created. Such documentation is even more important given the
long life and frequent updating experienced by the PIMS models. As an example, here is a
comment from one of the asset modules which illustrates the type of comments we recommend
be used more frequently and consistently:

// Assume plan uses three-year moving average method
// for asset smoothing.
asset_av = double(asset_mv - (2.0/3.0) * aAsset_capital_gain[year]

C++ Code Optimization Recommendations

Code optimization for a program of this size and complexity would require its own project as the most
effective optimization begins with algorithm design. However, during our review of the code we noticed
several items where post-algorithm changes should result in performance gains, particularly when
performing large numbers of runs. These changes will be most beneficial when applied to functions
which are called multiple times; however, the results will be minor when compared to algorithm
improvements.

Loop Optimization
When using counters in loops, it is faster to compare to zero than to compare two numbers. To
illustrate, here is an example from the ACT_FLAT cashflow.cpp file:

8|Page

As written: for (int a

min_age; a <= last_retire_age; a++)
Optimized: for (int a = last_retire_age - min_age; a--)

By eliminating the number comparison, the loop counter portion of the code will run faster. Special care
would need to be taken to ensure that subsequent calls using the “a” variable account for the change
but in many cases this is an easy change to make.

Specialized Functions

Complex programs present a balancing act between optimizing for performance versus reusability. Re-
using standardized functions makes maintenance easier but often results in performance sacrifices.
When a particular function is called multiple times by a loop, the code will run faster if the loop is moved
into the function with values passed to it.

As written:
for(cycle = 1; cycle <= num_cycles; cycle++)

{

ORes.write_pbgc_details(scenario, cycle, oPBGC);

}
Optimized:
ORes.write_pbgc_details(scenario, num_cycles, oPBGC);

The new oRes.write_pbgc_details function would need to be updated to include the loop and code
which calls the function to account for the migration of the loop.

Array Merge

There are numerous times throughout the code where array values are initialized one item at a time via
a loop. As of C++11 this operation can be replaced by the STD::COPY which will result in performance
improvements for some compilers.

As written:

for (int a = min_age; a <= last_retire_age; a++)

{
JjsFormConv_m[a] = ptrLiabilityData->Male_JNS_Factors[a];
JjsFormConv_f[a] = ptrLiabilityData->Female_JNS_Factors[a];
}
Optimized:

std::copy(jsFormConv_m[a], jsFormConv_m[last _retire_age], ptrLiabilityData-
>Male_JNS_Factors[a]);

std: :copy(jsFormConv_f[a], jsFormConv_f[last_retire_age], ptrLiabilityData->
Female_JNS_Factors[a]);

9|Page

Array Pointers
Using pointers for array manipulation can cause slight performance improvements. As an example,
when filling an array with values:

As written:
for (v = @; v <= vMax - 1; v++) bol_calc_newHire_CFs[v] = false;
Optimized:

for (int* ptrInt = nArray; ptrInt<bol_calc_newHire_ CFs+vMax; ptrInt++) *ptrInt= false;

Algorithm Implementation Review

Background

Based on the code review described above, we focused our detailed review on the key modules which
appear to correspond to the entities described within the documentation.

Modules Reviewed

This section lists the main modules FTI has reviewed for the purpose of assessing whether PIMS C++
coding adequately reflects program documentation. Chapter 7 of the PIMS 2010 guide provides a
description of various program components used by PIMS to simulate the pension insurance system.?
These components are the Economy, Firm, Plan, IRS, and PBGC. An object in PIMS C++ coding
represents each of these components.

An object in an object-oriented language such as C++ is an encapsulated program unit that contains data
and “methods” that can be used to access and manipulate the data. For example, the Economy object
contains the interest rate and stock market return data for each of the 500 macroeconomic scenarios.
Inside the Economy object, there are methods that read macroeconomic scenarios from input tables.
There are also methods that allow other program units to access information contained in the Economy
object. For example, if a program unit needs the interest rate and stock return for a particular yearin a
particular scenario, it sends a request to the Economy object. A method inside the Economy object
handles the request and returns the requested information to the requestor.

Because PIMS uses a sample of firms and plans to represent the entire insured plan universe, similar
calculations need to be performed for each firm and for all plans sponsored by that firm. An object-
oriented language allows different instances of firms and plans to be created, each processed in a similar
fashion. Thus, an object-oriented language provides a natural way for PIMS to organize similar
calculations. Furthermore, C++ is generally regarded as a computationally-efficient programming
language.

* PIMS 2010 Guide, pages 112 — 123.

10|Page

FTI has reviewed the main C++ modules that correspond to the objects described above (summarized

below).
Component | Description SE-PIMS Module ME-PIMS Module
Economy Interest rate and stock Economy.cpp Economy.cpp
market return stochastic
processes
Firm Generate financial and Firm.cpp Firm.cpp
employment information Industry.cpp
that affects bankruptcy Bankrupt.cpp
probability
Plan Project demographics, Plan.cpp Plan.cpp
calculate liabilities and Assets.cpp Plan_calc.cpp
assets, calibration of Assump.cpp Plan_calc_contr_mass_with.cpp
liabilities Benefit.cpp CFM_Fore_Cashflow.cpp
Partic.cpp PPA_Fore.cpp
Annuity.cpp Assump.cpp
Mortality.cpp
IRS Determines minimum and IRS.cpp IRS.cpp
maximum contributions
PBGC Processes bankruptcy, Pbgc.cpp Pbgc.cpp
models PBGC’s assets and
liabilities, collects premiums
and pays administrative
expenses
Running the | Run the simulation by Main.cpp Main.cpp
simulation stepping through Run.cpp Run.cpp

macroeconomic scenarios,
cycles and partner firms

From the database manager, the main input tables reviewed are the following:

SE-PIMS / ME-PIMS Tables

Economy
Firm
FirmCom
Firmmem
Industry
IRS

PBGC
Plan
PlanCom
Run
Sample
Sponsor

Stocpath (and the SAS coding)

We have also reviewed the SAS code associated with the macroeconomic scenarios.

11|Page

Algorithm Implementation Review Findings

PIMS codes are generally consistent with the documentation. However, there are inconsistencies due to
certain parts of the documentation being out-of-date. We also note that there are aspects of PIMS
codes which have been omitted from the documentation which should be included in the future.

1. The algorithms and parameters in PIMS codes and databases are consistent with the 2014
Projections Report. However, the 2014 Projections Report does not have all the details that are
available in the PIMS 2010 Guide and the Key Differences document. There are inconsistencies
of PIMS code with certain parts of the PIMS 2010 Guide and the Key Differences documents
because certain parts of those documents are no longer current. PBGC should provide an
addendum to the PIMS 2010 Guide and the Key Differences document that includes at least the
following:

a. New legislative actions that are reflected in the PIMS coding, but not in the respective
documentation (e.g., the funding interest rate stabilization provision of MAP-21 and
HATFA, and the provision of MPRA). A description of the modeling methodology and
assumptions should be provided. To the extent that certain sections of the
documentation are rendered obsolete, they should be noted.

b. The updates due to “Verification and Quantification of Buck’s Recommended Changes,
2014” should be noted in the Key Differences document.

c. Calculations that are performed on PIMS output (i.e., not as part of PIMS C++ code)
should be noted (e.g., the adjustment to PBGC variable premiums).

d. Parameters that are updated more frequently than the documentation should be noted
(e.g., real interest rate (currently 0.64% versus 1.48% in PIMS 2010 Guide) and
productivity (currently 1.65% versus 1.07% in the PIMS 2010 Guide)).

e. Program features or parameters that are not being used should be noted (e.g., the
implementation of parameter uncertainty).

2. Certain methodologies and parameters that appear in the SAS code or as comments in PIMS C++
code should be noted in the documentation:

o

The ultimate corporate bond yield spread is 1.1% over the Treasury yield.

The spread of PBGC’s annuity purchase rate over Treasury yield is 30% of the corporate
bond yield spread (i.e., 30% of 1.1%, or 0.33% percent).

106% of the corporate bond yield is used as a proxy for the third segment rate.

Salary merit increase scale is imputed from current age/service/salary distribution.

For calibration purposes, PIMS assumes base wage rates increase by 3% per year.

With respect to the description of the benefits valued, PIMS models different retirement
eligibilities, early retirement reduction, supplemental benefits and social security
integration.

o

S0 a0

3. PBGC should investigate the following items, which appear to be inconsistent between PIMS
coding and the documentation:

a. As mentioned in the Subtask 4.2 report, PIMS modeling of PBGC’s investment policy
(i.e., the extent interest risk is hedged) is unclear from the documentation.

b. As mentioned in the Subtask 4.4 report, for distressed terminations, PIMS coding
suggests that the 80% funded ratio threshold is determined on a plan-by-plan basis,

12|Page

while the PIMS 2010 Guide” suggests that the threshold is determined on an aggregate
basis.

c. Forthe purpose of variable rate premium only, the amount of employer contributions in
excess of the minimum required contribution is 21% of the funding target, per the input
data. The PIMS 2010 Guide states this is 15%.”

Best Practices

As with any large programming task, in-the-code comments and documentation within the PIMS models
are important tools for the ongoing maintenance and updating of the model. These comments have
taken on an even larger importance due to the lack of formalized system documentation. Lynchval’s
programs have done an excellent job maintaining version history notes in the comment sections of the
coding modules. However, additional descriptions around some of the variables are necessary given the
lack of outside documentation.

Some functions simply have placeholders for the missing documentation. For example:

//=Desc: Array error handling redirecter. Calls general error handler.

//
// Called by: ???

Although comments are frequent throughout the source code, they are generally minimal. Comments
with more robust context would be valuable, particularly when referencing unique cases such as special
run settings. Microsoft’s guide to programming best practices® recommends using “complete sentences
when writing comments. Comments should clarify the code, not add ambiguity.” And it suggests one
“use comments to explain the intent of the code. They should not serve as inline translations of the
code.” Few of the comments in the PIMS source code are complete sentences, and many of the
comments appear to be direct translations of the code as opposed to contextual explanations.

Overall Conclusions

Much of the documentation around the coding of PIMS is incomplete, out-of-date, or non-existent.
Additionally, PBGC should consider placing additional emphasis on documenting the design process for
future code development and updating the existing documentation to reflect the models as they
currently exist.

* PIMS 2010 Guide, page 121.
> PIMS 2010 Guide, page 79.

6 Coding Techniques and Programming Practices, https://msdn.microsoft.com/en-
us/library/aa260844(v=vs.60).aspx

13|Page

